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Abstract— The Kinect has encountered widespread use in
the areas of 3D mapping and computer vision thanks to its low
cost, portability, and depth sensing capability. Unfortunately, its
depth sensor has a maximum range of eight meters, and past
four meters it tends to be very noisy. This work presents an
approach to augment the Kinect with the ability to estimate the
data that is missing from its sensors, providing a more complete
picture of what is present in a given scene. In contrast to much
of what has been done, our work takes an approach more
suited to the three-dimensional structure of the world rather
than relying on image processing techniques. We develop a
model that utilizes image position, existing depth, color, and
surface normal measurements and derive an algorithm that
can estimate missing data in a depth image using only sensor
data as input. Our results show that the generated estimates
have a root mean square error of about 25 centimeters.

I. INTRODUCTION

The Microsoft Kinect, Asus Xtion PRO, and other
RGB-D (red, green, blue, depth) sensors have encountered
widespread use in the areas of 3D mapping and computer
vision thanks to their low cost, portability, and depth sensing
capabilities. While these sensors were originally designed
to be used for motion sensing, gesture detection, and body
recognition, researchers and engineers have taken advantage
of them for use in collision avoidance, mapping and local-
ization, and 3D model generation. Unfortunately, since these
sensors were designed for very specific applications, their
depth sensors tend to be quite limited in range and noisy in
certain situations. As a result, they perform poorly in larger,
open areas such as hallways where a large portion of the
scene is too far away (see Fig. 1). This is not a problem if
the sensor is being used for close-range applications, such
as object tracking, but it can be harmful when it is used to
make larger-scale inferences about the surrounding area. Our
goal is to augment the Kinect sensor by using the available
depth and RGB information to estimate the missing depth
information, providing a more complete picture of what is
present in a given scene.

A key assumption we make is that the environment can
be accurately represented as a set of planes. This assumption
is usually reasonable in man-made environments, where the
structure of the world tends to actually be composed mostly
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(a) RGB image (b) Raw Depth imagey

(c) Complete depth image

Fig. 1: Due to limitations of RGB-D sensors, there is missing
depth information (denoted in the darkest shade of blue in the
raw depth image) for remote parts of the scene. We propose
a Bayesian nonparametric approach to filling in the missing
data (c).

of flat surfaces. For the purpose of estimating depth, we
argue that this assumption is reasonable even in the presence
of curved surfaces. These can be approximated by multiple
planes. Higher order approximations would result in a more
accurate model, but may not be worth the trade-offs in
complexity and processing time for real world applications.
Planes segmentations have the benefit that they are possible
to obtain in real time [4] and can therefore be used in
common applications such as mobile robotics.

Our contributions include using this assumption to for-
mulate a probabilistic Bayesian model that also takes into
consideration color information regarding the scene, and
using that model to perform inference on missing depth
information. We utilize small-variance asymptotics in our
inference approach to arrive at a simple DP-means-like
algorithm to estimate missing depth information in a scene.
We demonstrate the advantages and disadvantages of our
approach using quantitative analysis against ground truth data
in a variety of scenes.

II. RELATED WORK
Completion and inference of depth information utilizing

RGB images has been experimented with in a variety of
ways. Using stereo images, depth can be inferred in a fairly



straightforward manner by looking at the displacement of
corresponding points between the two images. Saxena et al.
[10] inferred a depth image from a single monocular image
using a discriminatively-trained Markov Random Field that
takes into consideration both global and local image features
such as texture variations, texture gradients, and texture
energy. Their method worked well in finding relative depth
differences between objects in a scene, but struggled at
finding accurate absolute depth values. Eigen et al. [3] also
take on the problem of predicting depth from a single image
using global and local properties but instead utilize a Multi-
Scale Deep Network that consists of coarse and fine-scale
networks, taking advantage of large, raw datasets as training
data.

Sheng and Cheung [12] attempt to solve the same problem
as this work is: completing a depth image given an RGB
image and a noisy, incomplete depth image such as from a
Kinect sensor. They use an approach that splits an image into
depth layers that are obtained using color-depth correlation,
background modeling, and spatial smoothness and then re-
moves noise and interpolates using a bilateral filter. Because
their approach relies on splitting the image into a discrete
number of foreground and background layers, it is not well
suited to situations where objects span a larger, continuous
range of depth values. Such examples of scenes where this
situation could arise are the walls or floors of a long hallway
or a large room. Lu et al. [6] tackle the problem by splitting
it into two parts: dealing with the noise and holes in the
depth map separately. They utilize edge orientation along
with directional filters to improve on other filtering-based
approaches to the problem.

In contrast to much of what has been done, this work takes
an approach more suited to the three-dimensional structure
of the world. Rather than relying on image processing
techniques, we propose an approach that utilizes surface
normal measurements derived from depth information along
with reasonable assumptions about the approximate structure
of the world to arrive at a method that can better handle the
general cases of depth image completion.

III. MODEL

In this work, the world is modeled using a Multivariate
Dirichlet Process Gaussian von Mises-Fisher Mixture Model
(DP-GvMF-MM). Data points that are generated by this
model are represented as a vector containing position in
image space (u, v), depth d, color (L, a, b) expressed in the
L*a*b* colorspace (where L captures the lightness of a color,
and a and b capture hue), and surface normal (nx, ny, nz).
We express the parts of this vector that are in Euclidean
space as e and the parts that lie in spherical space as n:

x =

(
e
n

)
(1)

e =
(
u v d L a b

)T
(2)

n =
(
nx ny nz

)T
(3)

Spatial coordinates in the image space (u, v) along with
depth d are used rather than world coordinates (x, y, z) in
relation to the camera frame or some global coordinate sys-
tem. While world coordinates could theoretically be used by
utilizing existing depth measurements, the inference process
would be made more difficult, as the x and y of each data
point would be dependant on the depth measurement for that
value.

Rather than working directly with the RGB color values
the Kinect sensor provides, we choose to map the measured
color into the L*a*b* colorspace (also known as the CIELAB
colorspace). L*a*b* has been successfully used by other
works [1] [2] for the purposes of clustering and segmentation,
which makes it a better choice than RGB for the problem
at hand. Euclidean distances between colors in this space
roughly correspond to differences in color perceived by
humans [16], which will prove useful during inference steps.
We initially chose not to use the lightness channel of L*a*b*
to avoid the effects of shadows and highlights making
a single surface look like multiple ones, but in practice
observed that including the lightness channel provided more
accurate depth estimates. Typically, in indoor scenes, the
various surfaces present tend to vary in lightness as well
as in hue, which the L∗ channel helps capture.

From a generative standpoint, mixture weights π∞ are
first sampled according to a Dirichlet Process [15] (DP) with
hyperparamter α:

π∞ ∼ DP(α) (4)

The Dirichlet Process is used to allow for a possible count-
ably infinite number of mixtures [9]. An additional benefit
to using DP is the presence of many existing inference
algorithms, including ones that can be used on spherical data
[14] like the surface normals n in this model.

Mean µk and covariance Σk for the portion of each
mixture component that exists in Euclidean space are sam-
pled from a Normal Inverse Wishart (NIW) distribution
parameterized by θ:

µk,Σk ∼ NIW(θ) (5)

The NIW is used because it is a conjugate prior to the mul-
tivariate Gaussian [7]. This makes inference easier because
it guarantees that the posterior distribution will be in closed
form.

Similarly, mean mk and concentration parameter τ for the
portion of each mixture component that exists in spherical
space are sampled from a prior distribution ψ.

Labels zi are distributed according to a categorical distri-
bution:

zi ∼ Categorical(π) (6)

Each of the N data points xi in the image is then sampled
from the mixture component it is assigned to via the label zi.
The Euclidean part of xi is distributed normally according
to the mean and covariance of the component that label zi
corresponds to:

ei ∼ N (µzi ,Σzi) (7)
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Fig. 2: The graphical model of the proposed Dirichlet process
multivariate Gaussian von Mises-Fisher mixture model

The normal of each data point xi is sampled from a von
Mises-Fisher (vMF) distribution with mean and concentra-
tion also determined by label zi:

ni ∼ vMF(mzi , τzi) (8)

Given this model, we can write the joint distribution over
unknown parameters as:

p(π, zN1 , x
N
1 ,Σ

∞
1 , µ

∞
1 ,m

∞
1 , τ

∞
1 ;α, θ, ψ)

= p(π;α)

∞∏
k=1

p(Σk; θ)p(µk; θ)p(mk;ψ)p(τk;ψ)

N∏
i=1

p(zi | π;α)p(xi | Σzi , µzi ,mzi , τzi , zi;α, θ, ψ)

(9)

IV. INFERENCE
In the context of the given model, our problem is that for

some number of xi, we only have their location in image
space (u, v) and their color (L, a, b). In order to generate the
missing parts of each xi, the other parameters in the model
that determine xi must first be inferred using the input data:
all values of xi that are known completely.

A. Labeling Existing Data

Because part of the data exists in Euclidean space, and
part exists in spherical space, we designed a hard clustering
algorithm that mixes two existing ones: DP-means [5] and
DP-vMF-means [13]. Both of these algorithms make the
small variance assumption in order to simplify the inference
procedure. We choose to take advantage of these hard cluster-
ing algorithms for their simplicity and scalability. Our hope
is that in the future, this method could be used to perform
depth completion in real-time.

These hard clustering algorithms are derived by starting
at some algorithm that estimates the desired parameters
without any assumptions, such as the EM algorithm or Gibbs
sampling, and then analysing the asymptotic behavior when
a certain parameter approaches an extreme value. In order
to perform small variance analysis on our model, we will
assume that

Σk = Iσ2∀k (10)

τk =
β

σ2
∀k (11)

Fig. 3: As σ is decreased the distributions become more
concentrated about their respective mode. The top row shows
how the variance of a Guassian decreases with σ. The bottom
row shows how the concentration of a vMF increases as σ
decreases.

where I is the identity matrix of appropriate dimension, and
β is a known parameter we set. We make this assumption
so that as σ goes to 0, the variances Σk of the Gaussians
become small, and the concentration parameters τk of the
vMFs goes to ∞, resulting in the peaky behavior shown
in Fig. 3. We rely on the distributions being concentrated
around their respective modes for the following analysis.

If we integrate out mixing weights π, the result is the
Chinese Restaurant Process [13]:

p(zi = k | z−i, µ∞1 , eN1 ,m∞1 , nN1 ;σ, ρ2, τ0,m0)

∝
{
|Ik|p(xi | µk,mk;σ, ρ2, µ0, τ0,m0)

αp(xi;σ, ρ
2, τ0,m0)

(12)

where Ik is the set of i such that label zi = k and

p(xi | µk,mk;σ, ρ2, τ0,m0)

= p(ei | µk;σ, ρ2, τ0,m0)p(ni | mk;σ, ρ2, µ0, τ0,m0)

= N (ei;µk, Iσ
2)vMF(ni;mk,

β

σ2
)

(13)

and

αp(xi;σ, ρ
2, τ0,m0)

= αp(ei;σ, ρ
2, τ0,m0)p(ni;σ, ρ

2, τ0,m0)

= αN (ei; I(σ2 + ρ2))
Z( βσ2 )Z(τ0)

Z(‖ βσ2 + τ0m0‖2)

(14)

and Z is the normalizing function for vMFs. In the limit as
σ → 0, the analysis performed in [13] lets us simplify the
part of the above equation that comes from surface normals
ni. If we let α = eλ1

β

σ2
− λ2

2σ2 , where λ1 captures the vMF
contribution to α and λ2 captures the Gaussian contribution,
then

lim
σ→0

α
Z( βσ2 )Z(τ0)

Z(‖ βσ2 + τ0m0‖2)

= lim
σ→0

Z( βσ2 ) exp( βσ2 (λ1 + 1)− λ2

2σ2 )

(15)



Therefore, as σ → 0, the labeling step becomes

lim
σ→0

p(zi = k | z−i, µ∞1 , eN1 ,m∞1 , nN1 ;σ, ρ2, τ0,m0)

= lim
σ→0

{
pex k ≤ K
pnew k = K + 1

(16)

where

pex =

|Ik| exp( βσ2m
T
k ni−

‖ei−µk‖
2

2σ2
− β

σ2
(λ1+1)+

λ2
2σ2

+
‖ei−µ0‖

2

2(σ2+ρ)
)∑K

j=1 |Ij | exp(
β

σ2
mTj ni−

‖ei−µj‖2

2σ2
− β

σ2
(λ1+1)+

λ2
2σ2

+
‖ei−µ0‖2

2(σ2+ρ)
)+1

(17)

and

pnew =
1∑K

j=1 |Ij | exp(
β

σ2
mTj ni−

‖ei−µj‖2

2σ2
− β

2σ2
(λ2+1)+

λ2
2σ2

+
‖ei−µ0‖2

2(σ2+ρ)
)+1

(18)

We have used that the normalizers for the Gaussians and
vMFs cancelled out. After factoring out σ−2 from each term
in the numerator of the exponent, we notice that the final
term in the exponent goes to zero as σ does:

lim
σ→0

‖ei − µ0‖2

2(1 + ρ
σ2 )

= 0 (19)

Hence the following assignment rule is equivalent to sam-
pling from p(zi = k | z−i, µ∞1 , eN1 ,m∞1 , nN1 ;σ, ρ2, τ0,m0):

zi = arg max
k∈{1,...,K+1}

{
βmT

k ni −
‖ei−µk‖2

2 k ≤ K
β(λ1 + 1)− λ2 k = K + 1

(20)

Compared to the label assignment rule for DP-means:

zi = arg min
k∈{1,...,K+1}

{
‖xi − µk‖2 k ≤ K

λ2 k = K + 1
(21)

and for DP-vmF-means:

zi = arg max
k∈{1,...,K+1}

{
xTi mk k ≤ K
λ1 + 1 k = K + 1

(22)

our algorithm’s assignment rule takes into account the dis-
tance metrics for both spherical and Euclidean space and
attempts a joint optimization over both.

If a new cluster is created (the second case in Eq. (20)),
the number of clusters K is updated:

K ← K + 1 (23)

and new means are initialized using the value of the data
point being labeled:

µK = ei (24)

mK = ni (25)

Unlike our labels, we have separate means for ei and ni.
Hence, we can update them separately using the updates
derived in [5] and [13]:

µk =
1

|Ik|
∑
i∈Ik

ei (26)

mk =

∑
i∈Ik ni

‖
∑
i∈Ik ni‖2

(27)

B. Assigning Labels to Partial Data Points

Now that labels can be assigned to existing data points,
we must decide how to assign labels to incomplete data
points. Because we are trying to maximize the probability
that an incomplete data point xi has label zi = k, we can use
the same rule that assigned existing labels to complete data
points, but slightly modified to account for the information
we do not have:

zi = arg min
k∈{1,...,K}

||e\di − µ
\d
k || (28)

where e\di and µ\dk denote the respective vector without the
depth component.

C. Estimating Depth

With the labels assigned to the incomplete data points,
we now must estimate the depth values of these points. For
convenience, we describe the covariance of each cluster k as
being partitioned as

Σk =

[
Σd,d Σk,k

ΣTk,k Σ
\d
k,k

]
(29)

Given a label zi, a data point ei is dependent only on a
single mean and covariance, so

p(di | zi, µzi ,Σzi , e
\d
i ) = N (di; µ̄, Σ̄) (30)

where, as the result of conditioning on a multivariate Gaus-
sian,

µ̄ = dzi + Σzi,zi

(
Σ\dzi,zi

)−1
(e
\d
i − µ

\d
zi ) (31)

and

Σ̄ = Σd,d − Σzi,zi(Σ
\d
zi,zi)

−1ΣTzi,zi (32)

The maximum likelihood estimate of a Gaussian is the mean,
so in order to maximize the likelihood of our depth estimates,
we assign

di = µ̄ for i ∈M (33)

where M denotes the set of indices from 1 to N where
ei is missing a value for di. Algorithm 1 shows what the
final procedure looks like for depth completion under the
inference method we describe.



(a) RGB Images of scenes (b) Raw depth images (c) Estimated depth image (d) Log-likelihood of estimates

Fig. 5: Columns (a) and (b) show the input color and depth images to our algorithm. These images are typical of what a
RGB-D sensor measures. Column (c) shows the output of the proposed depth estimation method. Column (d) is an image
representing the log-likelihood of the estimates, where colors that are more red are more likely, and the darkest shade of
red represents information that already existed.

Algorithm 1 Complete Algorithm for Depth Completion

1: Initialize K = 0, µ = ∅,m = ∅, z = ∅
2: while Not converged do
3: for every complete data point xi do
4: Assign label zi according to Eq. (20)
5: if zi = K + 1 then
6: µzi = ei,mzi = ni
7: K = K + 1
8: end if
9: end for

10: for k ∈ {1, ...,K} do
11: µk = 1

|Ik|
∑
i∈Ik ei

12: mk =
∑
i∈Ik

ni

‖
∑
i∈Ik

ni‖2
13: end for
14: end while
15: for every incomplete data point xi do
16: Assign label zi according to Eq. (28)
17: di = µ̄, where µ̄ is calculated according to Eq. (31)
18: end for

V. RESULTS

We give quantitative measurements of our method on
several images from a large dataset to show how it performs
in general, as well as qualitative analysis on certain images to
highlight particular pros and cons. Fig. 5 depicts qualitative

results of how our method performs on actual data from a
Kinect without any added noise. We evaluate the root mean
squared error (RMSE) of our estimates against ground truth
data where random chunks of the depth image have been
removed to simulate missing data as depicted in Fig. 4.
We vary the size of the missing chunks to see how our
method performs against different severities of data loss.
Even when the size of the chunks is increased, however, the
net amount of removed data remains at about 20% to isolate
the effects of the size of the chunks from the net amount of
data missing. In order to control how heavily we weigh
surface normal values when performing the clustering step,
we use a parameter β, which is the same as the one described
in the Inference section. The parameter appears in the label
update step:

zi = arg max
k∈{1,...,K+1}

{
βmT

k ni −
‖ei−µk‖2

2 k ≤ K
β(λ1 + 1)− λ2 k = K + 1

(34)

In the first case, it controls how heavily to weigh the surface
normal contribution for this maximization. In the second
case, it controls the threshold for creating new clusters. In
our tests we varied the value of β to see it effects on the
error of our estimate.

A. Overall Accuracy and Effect of Varying Parameters
We tested our method on a subset of the NYU Depth

Dataset V2 [8] dataset. The size of the subset we tested on



(a) Original (b) Holdout w/ side length = 1

(c) Holdout w/ side length = 5 (d) Holdout w/ side length = 30

Fig. 4: Depth images with missing data simulated

Fig. 6: RMSE in the depth estimate as parameter β is varied,
and chunks of size 3-by-3 are removed from the depth image.
Notice that a minimum exists at roughly β = 0.5

was 778 images. Figures Fig. 6 and Fig. 7 depict the 25th,
50th, and 75th percentiles of the RMSE of the tests. The
median RMSE on these images with a hole size of 3 and a
value of β equal to 0.5 was about 230 millimeters.

As the size of the chunks of missing data was increased,
the RMSE of the estimate also increased. This result isn’t
surprising, as each missing data point has less neighbors with
information around it to help it get labeled appropriately.
What was surprising, however, was the RMSE only increased
by 65 millimeters when the size of the missing chunks
was increased from 3 to 40. This suggests that although
the quality of the estimate decreases when tasked with
completing larger chunks of missing data, the deterioration
in quality is not too large.

As β was varied from 0.1 to 1.5, the RMSE typically
decreased at first, then increased. The values of β that

Fig. 7: Mean error in depth estimate as size of holdout
data is varied, and β is held to a constant value of 1.0.
The RMSE tends to increase as larger chunks of depth data
are removed from the image, suggesting that the task of
estimating depth grows more difficult as the size of the
missing chunks increases, even though the total amount of
missing data remains the same.The fact that the variance
(indicated by the spread between percentiles) increases as
well supports this as well.

tended to have the smallest RMSE were between 0.4 and
0.6. When β = 0.5, Eq. (20) gives equal weight to the
parts of the data points that exist in Euclidean and Spherical
space. The results from this experiment suggest that the
proposed method performs best when the joint optimization
gives equal weight to the Gaussian components and the vMF
components.

B. Analysis of Specific Cases

We examine specific images at different points during the
inference pipeline to better understand both the advantages
of our method as well as the particular areas in scenes where
errors in the depth estimate are more likely. For all of the
specific cases examined, the parameter β was set to 0.5 (the
optimal value determined from the prior testing), and random
3-by-3 chunks of data were removed from the depth image.

In the first row of images in Fig. 8, a simple case is shown
where only very small chunks of depth data were missing ini-
tially. In the assignment step, an interesting labeling appears
near the foot of the bed corresponding to a striped design in
the RGB image. This is a result of including color in our data
vector. While one might think that having separate labels for
points that lie on the same surface could be harmful, the final
depth estimate for this image shows that this is not the case.

In the second row of Fig. 8, a case is presented where
medium sized chunks of missing data are present in the raw
depth image. Notice in the raw depth image that the armrests
of the rolling chair are missing completely, as well as the
legs on some of the chairs in the right hand side of the
image. In this case, some image filtering based approaches



(a) RGB Images of scenes (b) Raw depth images (c) Labelling Step (d) Assignment step (e) Estimated depth image

Fig. 8: Columns (a) and (b) show the input color and depth images to our algorithm. 3-by-3 chunks of pixels are removed
from the depth images in column (b) so that we can use the raw depth image as ground truth to evaluate against. Column
(c) shows the output of the labelling step, where every color represents a different label. Column (d) shows how the pixels
with missing depth data (the darkest blue pixels in column (b)) are assigned to labels. Column (d) shows the final output,
a completed depth image.

might have mistaken these missing areas as a part of the wall
or floor, since the areas around are primarily a part of the
wall or floor. In the estimated depth image that our method
produced, such a mistake is not made. The armrests and the
chair legs are given reasonable estimates. However, in the top
right corner of this image, a poster on the wall is incorrectly
labeled and given a very obviously incorrect depth estimate.
While the method presented does occasionally make poor
estimates, this can be prevented. In the images presented
as well as in the tests ran, the algorithm was allowed to
assign depth values even when it was uncertain of them for
testing purposes. For practical applications, the algorithm
could easily be modified to only supply an estimate for a
point when Eq. (30) is above a certain threshold.

In the final row of Fig. 8, a case is presented where
a very large chunk of missing data is present in the raw
depth image. In this case, the large chunk can be attributed
specifically to the range limitations of the depth sensor. In
this case, an image filtering approach definitely would not
suffice. Notice that in the estimated depth image, our method
actually extrapolates that depth values even larger than those
in the original depth image are required (the red and dark
red represent these values). For robots using depth sensors
to navigate buildings such as hospitals or retirement homes,
scenes like this hallway are fairly common. Having even
a rough estimate at such a long range, such as the one
generated, could be used to improve localization capabilities.

VI. CONCLUSIONS
We have designed a model and derived an inference pro-

cedure that allows us to estimate missing depth information

given a color image and partial depth image. Our method
achieves mean errors of about 250 millimeters in a large
variety of test scenes, and produces a reasonable complete
depth image. Our method relies only on a few parameters
being set ahead of time and standard output data from an
RGB-D sensor, meaning it has the potential to run in real-
time without extra input.

Our method takes a drastically different approach than
existing solutions and has the potential to be more robust
to the different types of depth data loss that occur when
using a RGB-D sensor, especially cases where large chunks
of data are lost due to range limitations.

Future work will aim to experiment with small changes
in the model and inference procedure to try and reduce
error rates in the produced depth estimate, as well as well
as optimizing the algorithm to run in real-time to test how
the completed depth image affects common applications that
rely on it. There are many small modifications that could
be tested, and have the potential to cumulatively improve
the estimated depth image by a large amount. For example,
we currently use the standard distance metric for Euclidean
space for color, but another metric that could be used
is the CIEDE2000 Color Difference Formula [11], which
supposedly better accounts for perceptual color differences.
The current method also currently weighs all Euclidean data
equally, but possible improvements could arise by granting
different weights to image location, color, and depth values.
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